Formeln und Richtwerte; Radial geklemmte WSP

Allgemeine Formeln

Schnittgeschwindigkeit

$$\mathbf{V}_{c} = \frac{\mathbf{D} \cdot \mathbf{\Pi} \cdot \mathbf{n}}{1000} \quad [\text{m/}_{min}] \qquad \mathbf{f}_{z} = \frac{\mathbf{V}_{f}}{\mathbf{n} \cdot \mathbf{z}} \quad [mm]$$

$$\mathbf{f}_{z} = \frac{V_{f}}{n \cdot z}$$
 [mm]

$$\mathbf{Q} = \frac{a_e \cdot a_p \cdot V_f}{1000} [^{cm^3}/_{min}]$$

Drehzahl

$$\mathbf{n} = \frac{V_{c} \cdot 1000}{D \cdot \Pi} \quad [min^{-1}]$$

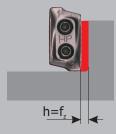
Vorschubgeschwindigkeit

$$\mathbf{V}_{\mathbf{f}} = \mathbf{f}_{\mathbf{z}} \cdot \mathbf{z} \cdot \mathbf{n} \quad [^{\text{mm}}/_{\text{min}}]$$

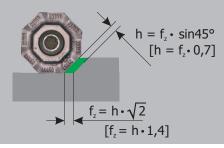
Hauptnutzungszeit

$$\mathbf{t}_{h} = \frac{\mathbf{L} \cdot \mathbf{i}}{V_{f}}$$
 [min

Optimale Schnittbreite ca. 2/3 vom Werkzeugdurchmesser! Gleichlauffräsen bevorzugen!


Wenn möglich GLEICHLAUF fräsen!

Gegenlauffräsen vermeiden!


Spanungsdicke h

Beim Planfräsen den Vorschub um 40% gegenüber dem Eckfräsen erhöhen!

Eckfräsen 100%

Planfräsen 140%

Legende

 $\Pi = Pi (3,1415...)$

V_c = Schnittgeschwindigkeit D = Werkzeugdurchmesser

n = Drehzahl

f. = Vorschub pro Zahn V_f = Vorschubgeschwindigkeit

z = Anzahl eff. Schneiden

h = Spanungsdicke

Q = Zeitspanvolumen

a_a = Seitliche Eingriffsbreite

t_s = Hauptnutzungszeit

L = Bearbeitungslänge

i = Anzahl der Schnitte h_m = mittlere Spandicke

E%= Eingriffsverhältnis

Mittlere Spandicke

Richtwerte für ausgesuchte Plattentypen

a	HELIPLUS	HELI DO	HEL12000	HELIDO	MiLL2000	HEL12000	HELi DO	HELIPLUS	MILL2000		
Plattentype		6	928	0	910	O			910		
	0702	0904	1003	1205	1304	1505	1706	1906	2006		

 $\mathbf{h}_{\mathbf{m}} \mid_{0.03-0.06} \mid_{0.04-0.08} \mid_{0.05-0.09} \mid_{0.06-0.12} \mid_{0.07-0.16} \mid_{0.08-0.13} \mid_{0.08-0.15} \mid_{0.08-0.15} \mid_{0.08-0.25} \mid_$

The second	2 12 LID	, , <u> </u>	2 12 2 2	2 12212
2 0 0 0 1	(Urand)	Description		Schnedkanten
2207	1205	0806	0806	0806

0,6 - 2,5 | 0,13 - 0,40* | 0,12 - 0,30* | 0,12 - 0,35* | 0,12 - 0,35* | 0,15 - 0,40* | 0,20 - 0,50* $\mathbf{h}_{\mathbf{m}} \mid 0.08 - 0.20 \mid 0.2 - 0.6 \mid 0.25 - 0.8 \mid 0.07 - 0.20 \mid 0.07 - 0.20 \mid 0.08 - 0.17* \mid 0.08 - 0.17* \mid 0.10 - 0.20* \mid 0.10 - 0.25*$

HELiDO

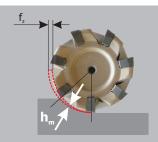
HELIOCTO

* 45° Einstellwinkel bereits berücksichtigt!

HELIDO

Bei Schnittbreiten größer 1/3 vom Werkzeugdurchmesser die Vorschubgeschwindigkeit mit f, berechnen!

Bei Schnittbreiten kleiner 1/3 vom Werkzeugdurchmesser die Vorschubgeschwindigkeit mittels h, berechnen!


Formeln für Schnittbreiten kleiner 1/3 vom Werkzeugdurchmesser!

Vorschub pro Zahn

$$\mathbf{f}_z = \mathbf{h}_m \cdot \sqrt{\frac{\mathbf{D}}{\mathbf{a}_e}}$$
 [mm]

$$\mathbf{h}_{m} = f_{z} \cdot \sqrt{\frac{a_{e}}{D}}$$
 [mm]

gilt bei Werkzeugen mit 90° Einstellwinkel

Tabelle

E%	Vorschub pro Zahn f _z															Dreh fak					
33%	0,03	0,05	0,07	0,09	0,10	0,12	0,14	0,16	0,17	0,19	0,21	0,23	0,24	0,26	0,30	0,35	0,44	0,52	0,70	0,87	1,
20%	0,04	0,07	0,09	0,11	0,13	0,16	0,18	0,20	0,22	0,25	0,27	0,29	0,31	0,34	0,38	0,45	0,56	0,67	0,89	1,12	1,
10%	0,06	0,09	0,13	0,16	0,19	0,22	0,25	0,28	0,32	0,35	0,38	0,41	0,44	0,47	0,54	0,63	0,79	0,95	1,26	1,58	1,
5%	0,09	0,13	0,18	0,22	0,27	0,31	0,36	0,40	0,45	0,49	0,54	0,58	0,63	0,67	0,76	0,89	1,12	1,34	1,79	2,24	1,
h _m	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,10	0,11	0,12	0,13	0,14	0,15	0,17	0,20	0,25	0,30	0,40	0,50	,

Eingriffsverhältnis

E% =
$$\frac{a_e}{D}$$
 • 100 [%]

Bei Eingriffsbreiten kleiner 33% Drehzahl bitte um oben genannten Faktor erhöhen!